Metabolomic-based strain selection of microbial bioinoculants which alleviate impacts of drought stress in crop production


Agriculture & Food


The main goal of this project is to design a new biofertilizer formulation composed of carefully selected, beneficial bacteria that can significantly improve growth and yield of plants exposed to drought. A novel type of plant growth promoting bacterium (PGPB) that lives in symbiosis with plants and can produce uniquely high levels of plant growth regulators (hormones) that are known as cytokinins (CKs). The application of a PGPB as a bio-fertilizer for crop improvement presents an outstanding opportunity for sustainable and eco-friendly plant agriculture. The success of this newly developed biostimulant depends on the bacteria’s ability to deliver potent, biologically active hormones to plants cultivated under limited water availability. To select the most efficient bacteria we use cutting-edge technology (high resolution mass spectrometry) to identify a new range of plant growth promoting substances secreted by the PGPBWe also monitor plant growth responses to the treatment with the bio-fertilizer under optimal and drought conditions. An advanced screening tool developed in this project will be used to monitor storage integrity of the new bio-fertilizer composition and will help in the further selection for new microbial fertilizer formulations. The bio-fertilizer formula will be optimized for soybean cultivation; however, its universal growth promoting characteristics can be applied to other plant species, especially those frequently subjected to dry growing seasons. The implementation of the results of our work will take place in the two years after the project completion and will include up-scaling of the manufacturing process, legal registration of the formulation and marketing of the new product. Our plant growth enhancing bio-fertilizer will create an economic advantage for local soybean farmers and will benefit the Ontario market of plant nutrition solutions. This can lead to new jobs in manufacturing, distribution and marketing agri-sector, which will help improve Ontario’s new economy. Finally, since this effective bio-fertilizer is of natural origin, it will present excellent potential to reduce the use of agri-chemical products and aid in protection of Ontario’s environment.