Overview
Identification of the genes associated with human disease is essential to the development of new prognostic, diagnostic, and treatment options. However, to understand what happens when genes go wrong, we need to understand the normal function of all our genes. This can’t be done using humans, so experimental models similar to humans in their development, physiology, and disease state that are easy to study and genetically manipulate are needed. The mouse meets these criteria so it is the most widely used animal model in biomedical research today. In fact, 99% of the coding genes (genes that make a protein) present in humans are also present in the mouse. Therefore, the mouse will help us with one of the greatest scientific challenges ahead; to understand the function of each of our 20,000 genes. This is an enormous task and the International Mouse Phenotyping Consortium has been formed by scientists in North America, Europe, and Asia to take on the challenge in a coordinated global effort. The Project is made up of a team of Canadian and UK scientists who, over the next three years, will use publicly available resources to study the developmental problems and diseases that occur in 280 mouse models. Each of these models contains one mutated gene (different in each model) that no longer works or only partly works. The differences in the mutant models compared to normal mice will help us determine the function of that gene. This Project will represent a significant contribution by Canadian scientists to the international effort. We will use clinical tests like those used for humans (e.g. blood work, X-ray) to determine the effect of each mutation and whether the gene or the protein it produces could be a drug target or used in a diagnostic test. Our Canadian group brings specialized expertise to examine mutations in genes that cause embryonic death as well as world-leading experience in pathology screening for disease. Our team includes social scientists who will examine how this and other international research efforts can best be managed and share data and other resources to increase their real-world impacts. The global effort to understand the function of every gene is a huge project that will take the next 10 years to complete. Canada has a critical role to play. Like our UK partners, we have expertise and state-of-the-art facilities that have enabled us to establish a leadership position in this field. The knowledge generated and new discoveries made in this Project will enable the development of new drugs and new therapies by Canadian researchers in academia and the biopharmaceutical industry. Our Project has already partnered with drug discovery scientists at the Ontario Institute for Cancer Research and commercialization partners at MaRS Innovation in Toronto to create an opportunity to attract contract research to Canada and support Canadian companies that can capitalize on the mouse models that we generate. www.NorCOMM2.org