Applying genomic selection to improve health, welfare, efficiency and production traits in turkeys

May 31, 2017

Dr. Christine Baes of UofG and Ben Wood of Hybrid Turkeys will be collaborating to adapt and apply genomic tools to improve the health, welfare and productivity of Canadian turkeys. Hybrid Turkeys’ parent company, Hendrix Genetics, has already implemented genomic selection in chickens and pigs, and will now adapt and apply the technology to achieve improvements in feed efficiency, bodyweight, yield, egg production and livability in commercial turkeys. This will lead to estimated economic gains of $39 million over the next five years for the Canadian turkey industry, and will result in environmental benefits due to improved feed efficiency as well as reduced manure and greenhouse gas production.

Read More

Increasing yield in canola using genomic solutions

May 31, 2017

Dr. Peter Pauls, Michael Emes, and Ian Tetlow of the UofG are working with Benson Hill Biosystems and its Canadian subsidiary, CanolaCo to produce more efficient varieties of canola for Canadian producers. Using a portfolio of trait candidates to improve photosynthesis-one of the most complex systems in plants-and developing these in canola, the project will enhance crop productivity by increasing photosynthetic capacity without negatively impacting seed quality. This will enable commercialization of the improved plants, with the enhanced yields of the canola crop enabling the industry to meet its goal of increasing yield by 53 percent in the next 10 years, growing industry revenues by an estimated $3-$4 billion per year.

Read More

Translating ’OMICS for competitive dairy products

May 31, 2017

Dr. Gisele LaPointe of UofG is working with Maria Pepe of Parmalat Canada, the number one producer of premium aged cheddar in Canada, to increase Parmalat’s manufacturing capacity, and thereby gain efficiency and protect market share. To achieve this, the team will validate and implement metagenomic, metaproteomic and metabolomics tools modified to meet the technical requirements of cheese production. By improving manufacturing processes and controls, the project will overcome current bottlenecks and significantly increase the production capacity of high-quality, competitive, aged cheddar cheese –ultimately increasing the demand for and utilization of Canadian milk.

Read More

Development of LSPR Sensor Technology for Next Generation Biosensors

May 16, 2017

Nicoya Lifesciences, a nanotechnology sensor company that builds novel products for the life sciences industry, is developing a new LSPR sensor chip technology that enables the accurate measurements of samples from crude or complex media such as water, food matrices, human saliva and more. With a granted patent on this technology, and demonstrated experimental proof of concept, Nicoya will utilise Ontario Genomics’ PBDF investment to begin to commercialize this novel sensor technology for the proteomics and genomics industry.

Read More

Genome-based microbial community modeling

March 9, 2017

Elizabeth Edwards and Radhakrishnan Mahadevan of the University of Toronto are developing computational models using microbial genomes and metagenomes to uncover metabolic interactions in complex anaerobic microbial communities. They will identify and validate metabolic gaps pointing to metabolites exchanged among an anaerobic subsurface mixed microbial community that contains microbes used for bioremediation of toxic chlorinated solvents. This project aims to boost the efficiency of dechlorination in groundwater remediation, and resolve metabolic gaps in genome-scale models at the microbial community level.

Read More

CRISPR/Cas9 conjugative plasmids for microbiome control

March 9, 2017

Drs. David Edgell and Gregory Gloor of the University of Western Ontario are working to develop and test a CRISPR/Cas9 conjugative plasmid system to enable precise user-defined manipulation of the composition of microbial communities. This novel microbial control system aims to enable the selective elimination of individual bacteria from a mixed population. If successful, the microbial control system has broad-ranging applications in basic biomedical research, industrial food-related process, and human health, bringing the scientific community one step further in the quest to harness the power of microorganisms to overcome humanity’s challenges.

Read More

The impact of antibiotics in the neonatal intensive care unit

March 9, 2017

Michelle Science of SickKids is collaborating with Bryan Coburn of the University Health Network to investigate the impact of antibiotic treatment on the developing microbiome of infants in Neonatal Intensive Care Units. They aim to identify how the microbiome is affected, and establish whether these changes are associated with short-term or long-term consequences. Their findings will guide decision-making and prescribing practices for infants and neonates in health care facilities, with the ultimate goal of improving patient outcomes.

Read More

Discovering the microbiome of corn silks

March 9, 2017

Manish N. Raizada of the University of Guelph is working to discover probiotic microbes inhabiting the hollow channels of Ontario corn silks. This investigation of the pollen tube microbiome aims to lead to the identification of probiotics which can be applied to silks to combat crop diseases afflicting grain. This has the potential to decrease the requirement for and reliance on pesticides, resulting in more sustainable and effective industry practices – with exciting implications for Ontario corn farmers, grain processors, and local consumers.

Read More

Disruptive Innovations in Genomics (DIG) announcement

December 13, 2016

On June 11, 2015 Genome Canada launched a Request for Applications (RFA) seeking proposals for research projects with the potential to advance the field of genomics and eventually lead to social and/or economic benefits to Canada – that is, projects which focus on Disruptive Innovations in Genomics (DIG).

Read More

Advanced biopolymer synthesis

December 13, 2016

In a world that is requiring increasingly biological-based solutions to meet the growing need for materials, tree biomass remains one of the most abundant resources on earth. Drs. Emma Master of the University of Toronto and Harry Brumer of UBC are leading a team recently awarded $9.5 million to focus on upgrading key biopolymers from trees using enzymes, to create materials that provide higher value than what otherwise might be realized. The project will harness the genetic potential of microorganisms to identify and develop new biocatalysts for this purpose. The high-value products to target, identified by end users and stakeholders, include resins, coatings, bioplastics and adhesives.

Read More